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ETS IV: Sequential Dynamical Systems:

Fixed Points, Invertibility and Equivalence

C.L. Barrett H.S. Mortveit C.M. Reidys

Los Alamos National Laboratory
TSA-2, MS M997
Los Alamos, NM 87545, USA

Abstract

Sequential dynamical systems (SDS) are discrete dynamical systems that are ob-
tained from the following data: (a) a finite (labeled) graph Y with vertex set
{1,...,n} where each vertex has a binary state, (b) a vertex labeled sequence of
functions (F;y : F3 — Fy); and (c) a permutation = € S,,. The function F;y up-
dates the binary state of vertex 7 as a function of the states of vertex i and its
Y -neighbors and leaves the states of all other vertices fixed. The permutation =
represents a Y-vertex ordering according to which the functions F;y are applied.
By composing the functions F;y in the order given by m we obtain the sequential

dynamical system (SDS)
[Fy,n] =[] Frgyy : F8 — F5 .

In this paper we will generalize a class of results on SDS that have been proven for
symmetric Boolean (local) functions to quasi-symmetric local functions. Further,
we completely classify invertible SDS and investigate fixed points of sequential
and parallel cellular automata (CA). Finally, we show sharpness of a combinatorial
upper bound for the number of non-equivalent SDS that can be obtained through

rescheduling for a certain class of graphs.

Key words: sequential dynamical system, quasi-symmetric functions, fixed points,

digraph isomorphism, topological conjugation.




1 Introduction

Sequential dynamical systems (SDS) [5,7] are a class of discrete dynamical
systems that were originally introduced in the context of formalizing com-
puter simulations. This paper continues the line of research on theoretical
foundations for simulations initiated in [3-5].

SDS directly captures the key constituents of a computer simulation: they
are given by (a) a collection of local functions (agents or object libraries),
(b) a graph (the interactions among agents) and (c¢) an update schedule (the
order in which the agents act). In the SDS framework a computer simulation
is viewed as a dynamical system, and generic questions such as classification,
categorization and validations can be translated into mathematically precise
questions on dynamical systems. In particular, the classification problem for
simulations now becomes a question on non-isomorphism of phase spaces for
the corresponding SDS. An immediate consequence of this identification is
that many observables that are commonly used for the classification of simu-

lations are often unsuited or insufficient for their purpose.

In a computer simulation one typically has “perfect” knowledge about each
agent or entity and its communication capabilities in isolation. However, to
retrieve information on the composed global dynamics produced through local
interaction among agents, one will typically have to implement and run the
whole simulation system. In fact, in view of [1] running a simulation is often
the best thing one can do as it is impossible to find a computationally more

effective description of the system in question.

The character of the results in this paper is to extract dynamical properties
of SDS from known quantities such as the dependency graph and the update
rules, without actually implementing and running the SDS on a computer.
This is also the approach in the earlier work on discrete sequential dynamical
systems [3,5,7,9]. In this sense it is possible to obtain important information
about a simulation and its global behavior based on “local” knowledge, that

is, without actually performing computer runs.

A number of results have also been obtained on the computational complexity
for the analysis of the behavior of SDS and the structure of their phase spaces

[1,2]. These results are centered around characterizations of the complexities



of state reachability problems for many classes of SDS. These reachability
problems are shown to be PSPACE-hard by very efficient reductions of the
membership problems for arbitrary deterministic linear space-bounded turn-
ing (Turing???) machines. The proofs of these PSPACE-hardness results also
show the following:

(a) the class of SDS, even when restricted to so-called vertex functions that are
identical and symmetric, and where the underlying graph is linear (a line???),
can efficiently “simulate” the behavior of arbitrary finite systems/networks of
CA, non-linear difference equations on finite algebraic structures and inter-
connected finite automata.

(b) the “simulating” SDS can be constructed very efficiently from the sys-
tem /network to be “simulated” by local replacement.

The implications of these highly efficient simulations and translations, e.g. the
efficient “universality” of SDS (for the finite discrete case) are under investi-

gation.

In this paper we will first generalize the class of permissible local functions
for SDS from symmetric to quasi-symmetric local functions. In this context
we will revisit several key results and establish their validity for this general-
ized function class. Next we will investigate fixed points of sequentially and
parallelly updated cellular automata (CA). This has been solved in [4] for
elementary cellular automata and here we extend this framework to cellular
automata with rules of arbitrary cell size. Finally, we prove the sharpness of a
combinatorial bound for the number of non-equivalent sequential dynamical
systems that can obtained through rescheduling [7, 9] for a certain graph class

using Boolean nor functions as local maps.

To make the paper self-contained let us revisit the basic framework of SDS
which we immediately will generalize to quasi-symmetric functions:

Let Y be a labeled graph with vertex-set v[Y] = N, = {1,2,3,...,n}. We
write this as Y < K,,. The edge-set of Y is denoted by e[Y]. Let Sy y (i) be
the set of Y-vertices that are adjacent to vertex i and let §; = |S1,y (7). The

increasing sequence of elements of the set {i} US; y(¢) is denoted by
Biy (i) = (Ji,- -4y, Js:)- (1)
The maximal degree in Y is d = max;<i<p ;.

To each vertex ¢ we associate a state x; € Fy, and for each £k =1,...,d+ 1



we have a symmetric function f;, : F& — Fy. For each vertex i we introduce a

map
projy[i] : F3 — F5 T (@1, @) = (@ Ty, ) (2)

The map projects from the full n-tuple z down to the states vertex i needs
for updating its state. We set x = (1, s, ..., 2,). For each i € N, there is a
Y-local map Fy : F; — 3 given by

Yi = f5;+1 © projy[il,

E,Y(x) = (.’L']_,-..,$i_1,yi($),$i+1,-..,$n). (3)

The function F;y updates the state of vertex ¢ and leaves all other states fixed.
We refer to the sequence (F;y); as Fy. Note that for each graph V < K, a

sequence (fx)1<k<n induces a sequence Fy, i.e. we have a map {Y < K,} —

{Fy}.

Definition 1 (Sequential Dynamical System) Let Y < K, and let (fi)
with 1 < k < d(Y)+ 1 be a sequence of symmetric functions as above. Let

m € S, where S, denotes the symmetric group on n letters. Define the map
[FYa ] : Sn %Map(]Fga]Fg)v [FYvﬂ—] = HFﬂ(i),Ya (4)
i=1

where product denotes composition. The sequential dynamical system (SDS)

over Y induced by (fx)r with respect to the ordering m is [Fy, 7).

We call an SDS homogeneous if it is induced by a sequence of local symmetric
functions of the form (fi)r = (Bk)r where B is a Boolean function like, e.g.
parity which returns the sum of its arguments modulo 2. By [By, 7| we mean

the homogeneous SDS over Y induced by the Boolean function B.

Example 2 Let Y = Circy, the circle graph on 4 vertices. The graph is shown

in figure 1. For each verter we have a symmetric function on 3 arguments. To

1——2

4——m3
Fig. 1. The circle graph on 4 vertices, Circs.

be specific we pick the parity function on three arguments for each vertex. The

function pary : 5 — Fy is defined by pars(z1, T2, 73) = >, 7; mod 2. Thus
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Fig. 2. For the update orders o = (1234) and m = (3214) and with F; = Nor;
the two SDS [Norgire,, o] (RHS) and [Norciy,, 7] (LHS) have non-identical phase
spaces, but their digraphs are clearly isomorphic.
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Fig. 3. The phase spaces of the two SDS [Norcijc,, (1234)] and [Norgirc,, (1324)]
to the left and right, respectively. Clearly, the phase spaces are not identical, and

their are also non-isomorphic.

for the update schedule (1,2,3,4) with initial state (1,1,0,0) we get

Fi(1,1,0,0) = (0,1,0,0),

Fyo F1(1,1,0,0) = (0,1,0,0),

Fyo0 Fyo Fy(1,1,0,0) = (0,1,1,0),
FyoFy0Fyo0Fy(1,1,0,0) = (0,1,1,1),

and thus [Fcire,, (1,2,3,4)](1,1,0,0) = (0,1,1,1).

We introduce the equivalence relation ~y g on S, xSy, by m ~y g o iff [Fy, 7] =
[Fy,o], and we let S, (Y) = {[Fy, 7] | @ € S,}. Note that we may have
T ~y,r 0 as a result of the structure of Y and/or the structure of the functions
F;y. Since phase space for an SDS is finite we may identify it with a finite

unicyclic digraph.

Definition 3 The digraph T'[Fy, | associated to the SDS [Fy, 7| is the di-
rected graph having vertez-set By and directed edges {(z, [Fy,n|(z)) | z € Fy }.

The requirement that each f; is to be symmetric is quite severe. In the next



section we will discuss how we may relax this condition such that most results
developed on SDS still remain valid.

2 A generalization of SDS

Restricting the local functions f; to the class of symmetric functions is lim-
iting for the possible SDS one can construct. Clearly, the main reason for
insisting on having symmetric functions is to avoid the complication where
the order of the states matters in the evaluation of fi. In general, different
orders of the arguments will produce different orbits of the dynamical system.
One may argue that in many applications the local functions are symmetric.
However, the fact that, e.g. the identity function is not in this class is a little
discomforting. With the framework above it is impossible to have Fjy = idgp

for each vertex ¢ unless the graph is the empty graph.

In [7,8] we established a best possible upper bound for the number of func-
tionally different SDS that can be obtained through changes of the update
ordering while keeping the graph and the local functions fixed. Explicitly,
there is a bijection

fy :Sn/ ~y— Acye(Y)

where Acyc(Y') is the set of acyclic orientations of ¥, and this bound is also
sharp. This bound is also valid for non-symmetric functions. In fact, it is
valid for arbitrary functions. Thus for giving the (best possible) upper bound
for the number of functionally different SDS that can be obtained through

rescheduling there is no reason for insisting on having symmetric functions.

In the following we will formulate SDS over quasi-symmetric functions and
furthermore show that key results on SDS remain valid. For this purpose let
E and F be vector spaces and let n be a positive integer. We consider E™ with

the Sy,-action 7(z;) = (z-1(;)) and set
QSymm(E™, F) ={f € Map(E",F) |[Vo € 1 x S, 1 : f(ozx) = f(x)}.

Similarly we write Symm(E™, F) for the set of symmetric functions from E™
to F. If E = F we simply write Symm(E™) and QSymm(E™). Accordingly,
the elements of QSymm(F%) are the local functions that are symmetric in the

neighbor states. Such functions are occasionally referred to as semi-totalistic



rules in the literature on cellular automata. In order to formulate the SDS-

framework for quasi-symmetric functions we set

By (i) = (3,41, --,75,) - (5)
The state projection map is set accordingly

projy[i] : FE — F ' (2, ..., 20) — (@is Tjys -+ -5 Tjs, ), (6)

and the corresponding maps Fjy are defined as before. We can now give:

Definition 4 (Sequential Dynamical System) Let Y < K, and let (fi)x
with 1 < k < d(Y) + 1 be a sequence with fr € QSymm(F%). Let m € S,,. The
sequential dynamical system (SDS) over Y induced by (fy)r with respect to

the ordering 7 is [Fy, 7).

It is worth mentioning that there are significantly more quasi-symmetric than
symmetric functions. We have e.g. | QSymm(F%)| = 2% and | Symm(F¥)| =
2k+1 In particular, the functions id;, : ¥} — Ty, idy(z;) = 1z are quasi-

symmetric, whence the identity map can directly be considered as an SDS.

One of the main motivations for the use of symmetric functions was based on
the study of equivalence of SDS. In general, two maps F,G : F; — FJ are
dynamically equivalent if there exists a bijection ¢ : Fj — F5 such that

G=gpoFop (7)

With the discrete topology on Fy, of course, equation (7) says that F' and
G are topologically conjugated maps. In particular, (7) implies, that the two
dynamical systems have a 1-1 correspondence between fixed points. For if x
is fixed under F' we obtain G(¢(z)) = ¢(x), i.e. p(z) is a fixed point for G.
In order to demonstrate how the restriction on the local functions manifest
themselves, we will give the proof of a conjugation result for SDS induced by
quasi-symmetric functions.

Theorem 5 LetY < K, and define the Sy-action on T3 by p(x) = (Tp-1(1), - - -, Tp-1(n))-
For allm € S, and all v € Aut(Y') we have

[Fy,ym] = yo [Fy,mloy™". (8)



PROOF. We can rewrite equation (8) as
H F’y7r,Y = H Yo F7r(i),Y © 7_1'
i=1 i=1

We will show that the the sth factor on the left and the ith factor on the right

gives the same result when applied to a state x. We have

Frno (#) = (1, fory (3| € Biym(i)), 1 20).

pos. vy (%)

Similarly

Y0 Friyy 07 (&) =70 Friiyy (T4(1), - - - » Ty(m))
= Y(T4(1), - - - ,fw(i) (| j€vB (’/T(Z))Z, N )
pos. (i)
= (xl,...,fﬂ(i)(:rj |j€ ’)/Bl(w(i)))l,...,xn).

pos. ym(i)

Equality follows from that fact that a graph automorphism v of Y makes
vBi(m(i)) = Bi(ym(i)) and also preserves the center vertex, plus the fact that
we have fr;) = fyx(;) since by construction there is only one local function for

a given degree.

We would like to point out that some earlier results on SDS will have to
be modified. For instance, the classification of invertible SDS is no longer

complete. We will return to this in section 4.

3 Fixed points of cellular automata

For SDS, and also for systems like sequential cellular automata, it is known
that the fixed points are independent of the update order. To be precise we
have:

Proposition 6 ([7]) LetY < K,, and let [Fy,n| be an SDS overY. We have

Voes,: Fix([Fy,o]) = Fix([Fy, 7]). 9)



A sequential cellular automaton (SCA) is constructed from a triple (Circ,,, ¢, 7)
where Circ,, is the circle graph on n vertices, ¢ : F5 — F, is some function and
m € Sy. Loosely speaking, an SCA is an SDS over Circ,, where arbitrary local
functions are allowed. If the updating is done in parallel we obtain a parallel
(or classical) cellular automaton (PCA). It is clear from Proposition 6 that
the fixed points of an SCA and a PCA are the same as long as they use the
same function ¢. In [4] this fact was used to study the structure of fixed points
of all SCA and PCA, and also to derive recursion relations for the number of
fixed points. Similar results have been obtained in, e.g. [6] in the setting of
cellular automata.

A function or rule ¢ : F§ — F, is called a radius-1 rule. A radius-r rule is a
map of the form ¢ : F3' ' — F,. Some convention has to be made about the
order of arguments to ¢. Here we compute the new value of the state of vertex
i as ¢(Ti_op, ..., Tiy--.,Tizor), where indices 0 and n etc. are identified. The
fixed point result in [4] only applies to the case with radius-1 rules. Here we
extend this result to the case of cellular automata with radius-r rules.

For this purpose we introduce the graph C},, having the property that any
radius-r rule on Circ,, can be identified with C,, ,-local function:

viCn,r] ={1,2,...,n} (10)
e[Cpr] = _L_Jl{{i,H 1<},

where indices ¢ and ¢ + n etc. are identified. As an illustration we have Cg 5 in

figure 4 below:

Fig. 4. The graph Cp .

Definition 7 Let r be a positive integer and let x,z' € Fo' ™. We say that

x is compatible with «' if x;v1 = ), 1 < i < r —1, and we write this as



z > 2'. A sequence C = (z* € Tt is a compatible covering of C,, if
N el S S L S

Let ¢, : T3 — Fy. A compatible covering C = (z'); of C,, is a compatible
fized point covering with respect to ¢, if ¢,(xt) = xiH for 1 < i < n. The
set of all compatible fized point coverings of Cy,, with respect to ¢, is denoted
Cs(n, 7).

Let ®¢,, : Map(F;*',F,) — DiGraph be the map assigning to ¢, the
digraph I'y, given by

[Ty, ] = {z € B | 6(2) = 241}, (11)
e[ly] = L[J ]{(x,x') |2 e v[[y], x> 2’}

Note that a cycle of length n in I'y, corresponds to a compatible fixed point
covering of C,,,. Clearly, I'y, has at most 2?1 vertices. Each C € €4, (n,7)
corresponds uniquely to a fixed point of an induced SCA (or PCA). To be
precise define

¢ : €4(n,r) = Fix (4, Cp ), go(xl,x2, ozt = (xiﬂ,xfﬂ, e T ).

(12)

The map ¢ is one-to-one by construction.

Theorem 8 Let ¢ € Map(Fs ™, Fy). The number of fized points L, of an
induced SCA over C,,, equals |€4(n,7)|. Let A be the adjacency matriz of T'y, .
We have

L, =Tr A" (13)
Let x4(l) = X a;l* be the characteristic polynomial of A. The number of

fized points L, satisfies the recursion relation

k
=0

PROOF. The first statement follows from the fact that ¢ is one-to-one and
that [A™];; is the number of cycles of length n starting at vertex i. Now, (13)

can be rewritten as

k
L,=TrA" = ZeiA"eiT,
i=0

10



where e; denotes the ith unit vector. The LHS of (14) now becomes

k k

k
; aiLn_i = Z az(z ejA"*iejT)

S
Il
)

=0

|
M=

k
(Z;) ejaiA"’ZeJT)
1=

j=0

<
Il

ej(apA™ +a; A" 4 -+ akA"_k)e]T

I
M=

j=0
k
= ZerA(A)A" ’“ef
j=0
= O’

where the last equality follows from the Hamilton-Cayley theorem.

Example 9 (Majority) For an SDS over C,, 2 induced by maj; we get the

Jollowing vertices for I'paj,

Hamming class

0

1

Vertices

(00000)

(00001), (00010), (01000), (10000)

(11000), (10010), (10001), (01010), (01001), (00011)
(11100), (10101), (00111), (01110), (01101), (10110)
(11110), (11101), (10111), (01111)

(11111)

The graph T, is shown in figure 5 . By ignoring states such as (11101) that
are “absorbing” in the sense that there can be no closed path containing them,
we obtain for the reduced graph x(r) = r'* — 2r13 4+ 271 — p10 8 4 6 g5
the characteristic polynomical of the corresponding adjacency matriz. Thus the
number of fized points of an SDS induced by majs : Fy — Fy, L, satisfies

Ly=2Ly, 1 —2Ly 3+ Ly 4+ Ly 6 — Ly s,

and we have Ly = 2, Lg =10, Ly = 16, Lg = 28, Ly = 38, L1 = 54, L1; = 68,

L12 = 94, L13 = 132

11
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/ \(01000)\ /(00010)/ \

(11000) (10001) (00011)

| }

(11100) (01110) (00111)
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(11110f7 \?01111)

(11111)
)

(01010) <— (10101)
(10110) —— (01101)
(01001) —— (10010)

Fig. 5. The graph I'yaj, -

Example 10 (Parity) In analogy to the above we obtain the graph T'p,,. pre-
sented in figure 6. Accordingly, an SDS induced by pars over Cp o has 16 fized

-~
(00000)

(10010)

Fig. 6. The graph T'p,y, -
points when n = 0 (mod 6), 8 fized points if n = 0 (mod 3) and n # 0

(mod 2), 4 fized points if n = 0 (mod 2) and n Z 0 (mod 3) and 2 fized

points otherwise.

12



4 Invertible SDS

In [4] we characterized all sequences of symmetric local functions that induce
invertible SDS. Here we will extend this result to also incorporate quasi-

symmetric local functions. To begin we recall some results from [4, 7].

Proposition 11 Let Y < K, let (f)x be a sequence f, € Symm(F5, Fy) and
let id,inv : Ty — Ty be the maps defined by id(x) = x and inv(z) = Z. An
SDS [Fy,n| induced by (fx)x is bijective if and only if for each 1 < i <n and

fixed coordinates x1,...,%;_1,%iy1,.-.,T, the map

Gi = fso v oPIOjy [t (%1, . Tict, S Tigs -, Tp) (T = Ty (15)

has the property g; € {id,inv}. Furthermore let m = (iy,...,0n—1,%n) € Sn,

T = (nyin-1,...,01) and [Fy,«] be a bijective SDS. Then we have
[Fy,ﬂ']_l = [Fy,ﬂ'*].

Remark 12 The above result is not limited to symmetric functions — it ap-
plies to arbitrary local functions. Also note that the inverse of an invertible
SDS s an SDS. This holds for arbitrary local functions as well, but is gener-

ally false for, e.q. cellular automata.

Define the function par, by

k
par, :F =Ty, par(z,...,z) :in, (16)
i=1
and the function pary : Fs — F, by pary(z1,..., 1) = 1 — par,(zy,. .., Tg).

Theorem 13 Let Y be a graph an let [Fy, 7| be an SDS over Y induced by a
sequence of symmetric functions. Then the following assertions are equivalent:
(1) V€ 8Sy; [Fy,n] is invertible

(ZZ) Fy = (F:i,Y)i where Fji,y = Pari,y or E,y = mi,y.

The proof uses the condition (15) in Proposition 11 and it is shown by induc-
tion that the value of a local symmetric function fj, on the state (0) determines
frx completely. As a consequence we see that there are (up to scheduling) only

two homogeneous invertible SDS induced by symmetric local functions.

13



Let fr € QSymm(F%). In the following we will describe the structure im-
posed on fj by requiring that each Fjy is invertible. Let z = (z1, 22, ..., %)
Since f; € QSymm(F%) it only depends on the values o, . .., z; through their
sum s = Y.F .z (computed in Z). Let 7 € F5~! denote the (k — 1)-tuple
(%2, ...,2k). Set f(0,Z) = aos and f(1,Z) = a1,. The condition (15) implies

that ag s = @1 ,. Thus we have:

Proposition 14 Let [Fy,n| be an SDS over Y < K,, induced by (fx)k, fr €
QSymm(F%). Then we have

[Fy, 7] is invertible < Vk € Ngy1 Vs € Zy, : [ags = 1 5)-

5 Sharpness of the Combinatorial Bound

In the introduction we already discussed the classification problem of simu-
lations and that it is of interest to distinguish the phase space of two SDS
up to isomorphism. In the classical theory of dynamical systems this prob-
lem is addressed in the Hartmann-Grobmann theorem which roughly states
that an ODE and its linearization have the same behavior around a critical
point provided that no eigenvalues have real part zero — their phase spaces are

homeomorphic in an open set containing the critical point.

We say that two SDS [Fy, 7| and [Gy, o] are dynamically equivalent if there
is a bijection ¢ : F} — F7 such that

[Fy,mlo¢=¢olGy,0]. (17)

In fact, Proposition 5 relates the dynamics of two SDS that only differ by
their update schedules. This naturally leads to the question: How many non-
equivalent SDS can we obtain by varying the update order while keeping the
local functions and the graph fixed?

In [9] the following framework has been introduced: A graph Y and an auto-
morphism 7 of Y induce a new (reduced) graph (v) \ Y given by

VIMAYT={n@) [ e v[Y]} and e[()\ Y] ={(1)(v) | y € e[Y]}.

Moreover, the Aut(Y)-action on the vertex-set naturally induces an Aut(Y)-

14



action on acyclic orientations given by

{v 0}({i, k}) = O({v~'(0), 7 (B)})-

We can now give the following upper bound A(Y’) for the number of non-
equivalent SDS [7,9]:

AW) = iy 2 al\Y) = s 3 [Fix)| (18)

yEAUL(Y) yEAut(Y)

Here a(Y') denotes the number of acyclic orientations of ¥, and Fix(7y) is the
set of acyclic orientations of Y that are fixed under 7. The quantity A(Y") is
the number of orbits in Acyc(Y) under Aut(Y).

It is still an open question for which classes of graphs Y and which sequences
of local functions (f;) this bound is sharp. In [7] it is shown that the upper
bound is always realized for Nor-systems over Star,-graphs, where Star, is
defined by

v[Star,] = {0,1,2,...,n},
e[Star,| = {{0,i} | 1 <i < n}.

In the following we will show that the bound is sharp for Star;,,-graphs. Let
Star; , be the graph derived from Kj by joining to each of its vertices m other

vertices. That is,

v[Star, ] = v[K;] U g{zr |1 <r<m} (19)

e[Star, ] = e[K) U | J{{i, %} | 1 <7 <m}.

=1

The graph Stars o is shown in figure 7.
Lemma 15 Let m,l > 2. We have

Aut(Starl,m) = an A Sl. (20)

PROOF. An element v of Aut(Star;,,) maps K; vertices in Star;,, into
K vertices since it is degree preserving. Since <y also preserves adjacency

the degree-1 vertices 7; attached to vertex ¢ can only be permuted among

15



Fig. 7. The graph Stars s.

themselves and moved such that they are adjacent to (). Thus we see that
Aut(Star;,,) = KH = HK where H, K < Sj11p are the groups

K:{(1 b le L lm)|0i65(i1,...,im)} (21)

1o, O1,m Lo Ot,m

and
H = {0 € Sym+1) | 0(t) =] = Vk € Ny, : 0 (ik) = ji }- (22)
Let k € K and g = h - k1 € Aut(Star,,,). Then we have

g-k-g’lzh-kl-k-kfl-hfl
=h-ky-h7,

where ky = ki - k- k;*. In view of h - ko - ™! € K we derive K < G, and
consequently G = K x H follows. Since K = S' and H = S; we are done.

Proposition 16
A(Star,,) = (m+1)". (23)

PROOF. We will establish equation (23) by computing the bound in (18)
directly. First, we know from Lemma 15 that | Aut(Star,,,)| = I! x m!’. We
write automorphisms as v = (oy, 7y, ...,7m), where o; is the permutation of
the vertices of the K; subgraph and 7; denotes the permutation of the vertices
i1, - - -, %m- We observe that v € Aut(Star,,,) does only contribute to the sum in
(18) in the case o; = id. If this was not the case the reduced graph () \ Star;
would contain at least one loop, and would thus not allow for any acyclic
orientations. Now with ¢; = id it is clear that (y) \ Star,,, will be the graph
K, with #(m;) vertices attached to vertex i of K;. Here #(v) denotes the

number of cycles in the the cycle decomposition of v where cycles of length
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one are included. Thus the number of acyclic orientations of the reduced graph
(7} \ Stary, in this case is /! x 2#(7). We now get:

A(Starl,m) = \Aut(Sltarl,m)\ Z a(<’y> \ Starl,m)

YEAut(Stary )

1 .
- ‘ AUt(Starl’m)\ ; a({(y=(id,m,...,m))\ Starl,m)

1 l
= . l‘ . Z 2#(7)
I! x mlt (nyStarm )
B Y estarn, F#(I\
N ( m! )
= (m+ 1),

where the last equality follows by induction, and we are done.

Let Ap(Y) denote the number of non-equivalent SDS that can be obtained
from the sequence of local functions F' = (F;); over the graph Y.

Theorem 17 We have
A(Starg,k) = ANor(Starz,k). (24)

Furthermore let m € Soxyo. The SDS [NOTStarQ,k,W] has exactly one periodic
orbit of length 3.

In other words, the combinatorial upper bound A is sharp for the graph family
Starz,k.

PROOF. Obviously, it is sufficient to show that SDS induced on disjoint
orbits of U(Starasy2)/ ~star,,, under Aut(Stary ) are pairwise non-equivalent.
We will show this in three steps. First we will derive representative update
schedules for each of these orbits. Second we compute the in-degree of the zero
state in each of these cases with Nor as local functions and third we will prove

that all corresponding phase spaces are in fact non-isomorphic.

To begin, we immediately observe that S,; = Line, and it is easily checked
that the bound A(Lines) = 4 is sharp in this case. In the following we can
therefore assume that & > 2 holds.
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Step 1. Let m € Sorio and set

Al(ﬂ') = {]-k: | 1 <, 1}, Az(ﬂ') = {1k | 1, >x 1},
Bi(m) = {2 | 2 <2 2V, Bo(m) = {2 | 2 > 2}.

The possible update schedules for SDS over Starp) can be categorized as
follows:

Case : [Ay =0V Ay =0 A[By =0V By = ()]

Case II: [[A; =0V Ay = O] A [By, By # 0]] V [[A1, As Z D) A [By =0V By = 0]
Case III: Ay, Ay, By, By # .

Note that these classes are invariant under Aut(Stary ). We will write z1, z,
y1 and yo for the states associcated to the vertices contained in Ay, A,, B
and B, respectively. We also set A = A; U Ay and B = By U Bs.

Case I is in fact similar to the line graph on 4 vertices. There are 4 orbits in

U(Stars ) under Aut(Stary ) and these orbits have representatives

7Tlaz(14a]-72)B)a T = (Aa]-aBaQ),
ch:(laA72aB)a Tid = (1,A,B,2),

where, e.g. (A, 1,2, B) denotes the permutation (1q,...,1x,1,2,2¢,...,).
Similarly, class II has 4 main representatives that each fall into £ — 1 subcat-

egories. Thus there are 4(k — 1) orbits and the main representatives are given
by

Mg = (Ah 1,A2,2,B), Top = (A17 ]_’A2’B’2),
T2e = (BaQaAlalaAQ)a Tod = (Q,B,Al,l,AQ)_

By, e.g. (41,1, Ay, 2, B) we denote the permutation

(lag,---51g,,1,1 o 1a,, 2,210,000, 2),

Ar417 "

where 14,,...,14, € Ay, 14, ,1,-..,1q, € Ay, 01 <--- < @apand g, < --- <
ag.

Finally, in class III there is one main representative given by

T3 = (Ala ]-7 A27 Bla 27 BZ)

18



with (k — 1)? sub-cases, and where the notation is as explained above. We
further note that, in accordance with proposition 16, we have

444k -1+ (k=1 = (k+1)%

Step 2. From [9] we know that the state (0) has maximal preimage size, or
alternatively, the indegree of (0) in the associated digraph of an SDS is maxi-
mal. It it thus sufficient for us to show that in all the cases above the indegrees
of (0) are pairwise different. We summarize all the information in the table
on page 19 where we write |A;| = k; and |B;| = ky. From the table on page

Case Indegree of zero Preimages of zero

Tia = (4,1,2, B) dig =1+ 21 (z101), (1011), (2111)

™ = (4,1, B,2) dip = 28(1 + 2%) (10y1), (2z1y1)

me = (1, 4,2, B) dic=4 (1101), (0101), (0111),
(1111)

ma = (1,4A,B,2) dig = 2Ft1 (01y1), (11y1)

20 = (A1,1, 42,2, B) dpq = 2+ 20171 (10101), (z11101),

mop = (41,1, A2, B, 2) dop = 28(1 +2M) (101y1), (z111y1)

T = (B, 2, A1, 1, Ag) doc = 2F(1 4 2F1) + 27 | (y1101), (10z111),
(ylz111)

moq = (2, B, A1, 1, Ap) dog = 2 + 2k1+1 (01101), (11101),

(01z;11), (11z,11)

73 = (A1,1,A49,B1,2,Bs) | d3 = (1 + 2k1)(1 +2F2) | (101101), (z111101),

(101y111), (z111y:111)

19 we see that all potentially conflicting cases (where the indegree of zero is
not sufficient to conclude non-isomorphism) occur within case 3 (i) (two pairs
ki, ke and ki, ki, give the same indegree), in case la vs. 3 (ii) and in case 2a
vs. 2d (3ii).

Step 3. The phase spaces for the cases (i), (i7) and (4i7) are non-isomorphic.
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Claim. For any m € Sy, [NOTIstara,k, 7] has exactly one periodic cycle of length
3.

Clearly, it is enough to investigate a representative schedule from each of the
classes above. We show this for case 1a. The proof of the remaining cases is
essentially the same. Here we have 7 = (A4,1,2, B). Assume the state y =
(X,z,y,Y) is a periodic point of period 3. If z = 1 then we must have X =0
and y = 0. If Y # 0,1 x will have an even period whence Y =0 or Y =1
holds. This gives

(1,0,0,0) = (0,1,1,0) = (0,0,0,1) — (1,0,0,0)
(1,0,0,1) = (0,1,0,0) — (0,0,1,0) = (0,1,0,1),

and accordingly there exists at least one periodic cycle of length 3. Similarly,
we see that if x = 0 then X = 0 or X = 1 as x will have an even period
otherwise. Analogously we derive that y = 1 implies Y = 0 and if y = 0
we necessarily have Y = 1. This leaves us with the candidates (0,1,0,0),
(0,1,0,1), (0,1,1,0), (0,0,0,0), (0,0,0,1) and (0,0,1,0), out of which only
(0,0,0,0) is not covered above, but (0,0,0,0) maps to (1,0,0,1) which has
period at least 4, proving the claim.

As a result of the above arguments we can determine the 3-cycle in case la,
2a, 2d and 3 as follows:

Case la:
(2100) —(0010) — (1001) , z#0 (25)
(0100)
Case 2a:
(211000) — (00110) —(10001), a1 # 0 (26)
(01000)
Case 2d:



Case 3:

(001y;10) — (100001) — (010100), 1,91 #0 (28)

7

(110100) — (001010)

ad (7): Diagram (28) immediately implies that there can be no two pairs of
values (k1,k2) and (K, k%) yielding the same indegree of 0 and isomorphic
3-cycles, whence in (i) we have non-isomorphic phase spaces.

ad (i7): Diagram (25) and (28) show that for (1a)-phase spaces only one vertex
of the 3-cycle has indegree larger than one, while (2a) and (2d)-phase spaces
always exhibit two vertices on the 3-cycle with indegree exceeding one, whence

(17) follows.

ad (4i7): If (2a) and (2d) phase spaces exhibit the same indegree of zero, then
the value of k; must be the same. Then it follows that the indegree of the
3-cycles in (26) and (27) are not equal and we are done.
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